Leading solar fuels research since 1994
 

Welcome!

The Swedish Consortium for Artificial Photosynthesis is a collaborative research environment with the purpose of advancing the science and utilization of solar fuels - fuel from solar energy. We bring together leading scientists with expertise in molecular biology, biophysics and biochemistry, synthetic chemistry and chemical physics.

The Consortium was started in 1994. Since then we have assembled the necessary expertise in an integrated research body, known as the Swedish Consortium for Artificial Photosynthesis.

Here we present who we are and what is going on in our research. We invite anyone who wants to know more about artificial photosynthesis and solar fuels to follow the links to the homepages of our researchers.  

Welcome!

News

May 2020

Congratulations to Haining Tian, who was recently awarded the prestigious Göran Gustafsson Prize, and also awarded Wallenberg Academy Fellow in Engineering and Technology 2019, for his work on catalysis and solar fuels.

Read more about Haining at the Knut and Alice Wallenberg Foundation webpage, and on the Tian group webpage.

  





Presently (June 2020) the Swedish Consortium for Artificial Photosynthesis follows the recommendations by the Swedish authorities, to practice social distancing, avoid crowds, and to work from home whenever possible. This means that all planned CAP meetings during the spring have been postponed. 

However, we continue to give scientific seminars/webinars, utilizing online meeting tools such as Zoom. So keep an eye on our calendar and check in on our News and Events page every now and then, to see what's next.

Keep healthy!

March 2020:  Brian D. McCarthy, Anna M. Beiler, Ben A. Johnson, Timofey Liseev, Ashleigh T.Castner, and Sascha Ott published an article in Coordination Chemistry Reviews:

Analysis of Electrocatalytic Metal-organic Frameworks

Abstract: The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.


January 7, 2020:   Mun Hon Cheah,  Miao Zhang,  Dmitry Shevela,  Fikret Mamedov,  Athina Zouni, and  Johannes Messinger published an article in Proceedings of the National Academy of Sciences of the USA:

Assessment of the manganese cluster’s oxidation state via photoactivation of photosystem II microcrystals

Significance: Photosynthetic water oxidation by the multi-subunit membrane protein complex PSII is an important process that sustains all aerobic life on Earth by producing molecular oxygen from sunlight and water. Understanding the mechanism of this process is crucial toward advancing fundamental knowledge as well as providing a blueprint for the development of solar fuel devices. Important pieces of information required for solving the mechanism of biological water oxidation are the oxidation states of the manganese ions forming the catalytic site of water oxidation in PSII. Here, we resolve a long-standing controversy between 2 competing schools of thought, by providing a clear-cut determination of overall manganese oxidation states using a simple counting experiment.

Fig. 4: (Top) Laser flash spacing’s used for photoactivation of apo-PSII microcrystals suspension by various combinations of tightly spaced preflashes (green line) and monitoring flashes (red line) with 15-s spacing. The dark time of 240 s was employed to allow the back reaction of the S2 and S3 states to S1. (Bottom) Total number of flashes required to observe the first O2 evolution (left axis) during the photoactivation of apo-PSII crystals with various combinations of preflashes and monitoring flashes (see Top). The yields of the first O2 peaks, plotted in blue, are the averages of 2 repeat measurements, and the error bars are SDs.


Want more science? Check out our science page!

March 4, 2019: CAP scientists in the TV news

At the CAP meeting in Umeå, CAP researchers were discussing future hydrogen technology. We also had the chance to test drive a fuel cell vehicle that runs on hydrogen gas. Swedish public service television filmed the event, which can be watched here: Vätgasbilar spås ha nyckelroll i framtiden



Participants in the CAP workshop in Sigtuna, Sweden, April 26-27, 2018.

Participants in the CAP workshop in Sigtuna, Sweden, April 26-27, 2018.


Our partnerships:


Last updated February 1, 2020